

Atmospheric ν_{τ} appearance

- ${\triangleright}$ oscillation from a pure ν_{μ} and ν_{e} atmospheric flux into ν_{τ} channel
- ightharpoonup large oscillation maximum: complete $u_{\mu}
 ightharpoonup
 u_{ au}$ conversion at ~25 GeV and upward going
- ▶ well above few-GeV detection threshold of KM3NeT/ORCA (optimized to measure neutrino mass ordering)

Neutrino detection in KM3NeT/ORCA

- ▶ KM3NeT: Astroparticle (ARCA) and Oscillation (ORCA) Research facility in the Mediterranean Sea

31 × 3" PMT

Neutrino detection in KM3NeT/ORCA

- ▶ KM3NeT: Astroparticle (ARCA) and Oscillation (ORCA) Research facility in the Mediterranean Sea
- 3D array of Digital Optical Modules (DOMs)

31 × 3" PMT

KM3NeT/ORCA

- 20m horizontal /9.3m vertical spacing between 2070 DOMs
- ▶ instrumented mass ~6.7 Mt

- under construction,
 out of 115 strings ("Detection Units", DUs) installed and operating since > 1 year
- ightharpoonup arXiv:2103.09885, submitted: update to the Letter of Intent, including sensitivity to ν_{τ} -appearance
- ▶ PoS(ICRC2021)1123: first oscillation analysis with KM3NeT/ORCA

First oscillation measurement with KM3NeT/ORCA

- ightharpoonup first oscillation measurement: u_{μ} disappearance mode
- ▶ analysed dataset: 355 out of 386 days taken with 6 DUs
- b 'clean' neutrino sample
- ▶ atmospheric oscillation via L/E measurement
 - L: from reconstructed direction
 - ▶ E: from muon track length
- ▶ 5.9 σ preference for oscillation

KM3NeT/ORCA can already measure oscillation

Event signatures

- @ GeV energies:
- ≥ ~4m / GeV muon length
- ≥ ~15 detected photons / GeV in ORCA
 - → track/shower distinction using machine learning techniques

[arXiv:2103.09885; JINST 15 P10005 (2020)]

ν_{τ} CC interactions

- ightharpoons au mass $pprox 1.78\,\mathrm{GeV}/c^2$
 - cross section suppressed, threshold: 3.4 GeV

strength of KM3NeT/ORCA: ν_{τ} statistics

 \triangleright >3000 detected oscillated $u_{ au}$ CC / year !

- $\triangleright \tau$ decay after $\mathcal{O}(mm)$:
 - no event-by-event identification possible in KM3NeT/ORCA
 - $\triangleright \ \nu_{\tau}$ appearance on statistical basis

shower-like

track-like

Event classification

- ▶ Random Decision Forest used, trained on binary decision problems:
 track ↔ shower,
 neutrino ↔ atm. muon, neutrino ↔ pure noise (⁴⁰K) → can be suppressed to few-% level
- $ilde{f b}$ uses **high-level features** from track/shower reconstruction algorithms & hit distributions expected for u_{μ} (track) or u_{e} (shower) (LLH ratio based)
- ▶ Deep learning classifier trained directly on photon "hit" distribution yields consistent results

[JINST 15 P10005 (2020)]

Track ↔ **shower classification**

Sensitivity to tau neutrino appearance with KM3NeT/ORCA

Sensitivity to ν_{τ} appearance

 \triangleright compare measured signal strength of ν_{τ} contribution with physics model assumption

 ν_{τ} normalisation measurement

- ▶ similar approach also in Super-K / DeepCore
- currently: non-appearance excluded, **but**:
- normalisation barely constrained

KM3NeT/ORCA 1 σ projection,

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8

IceCube/DeepCore

[Phys. Rev. D 99, 032007 (2019)]

v_{τ} normalisation

normalisation \neq **1:** deviation from assumed physics model

"model independent"

- cross section wrong? $\mathcal{O}(10\%)$? uncertainties in calculations due to τ mass

CC

CC+NC

- additional interactions?
- 3 neutrino picture complete? ↔ unitarity: conserves normalisation

with unitarity:

%-level precision on most oscillation parameters from experiment

without unitarity:

 \leftarrow large uncertainties in ν_{τ} row !

Event distributions in analysis

events binned in energy & cos(zenith angle)

- $\begin{array}{ll} & \text{rate of interacting neutrinos} & R_a = \frac{\rho_{\text{water}}}{m_{\text{nucleon}}} \cdot \sum \sigma_a(E) \cdot P_{b \to a}^{\text{osc}}(E,\theta_z) \cdot \Phi_b^{\text{atm}}(E,\theta_z) \\ & & \text{begin{tikzpicture}(0,0) } & b = \{\nu_{\text{e}},\nu_{\text{m}},\bar{\nu}_{\text{e}},\bar{\nu}_{\text{m}}\} \end{array}$
- > x classification: track / shower / intermediate
- ➤ x detector resolutions (smearing):

direction: limited by intrinsic fluctuations from ν -lepton scattering **energy:** limited by shower-to-shower fluctuations (all flavours), detector size (high E μ -tracks)

events per year in analysis sample:

	shower	middle	track
$\nu_{\tau} + \overline{\nu_{\tau}} CC$	2.0×10^{3}	0.85×10^{3}	0.43×10^{3}
other ν	2.0×10^{4}	1.8×10^{4}	2.0×10^{4}

Significance evaluation

- ▶ fit one average data set (Asimov approach)
- ▶ hypothesis test:

H0: ν_{τ} norm = 1, parameters fixed

H1: ν_{τ} norm \neq 1, free parameters fitted

- ▶ scale either CC-only or CC+NC contribution (barely any sensitivity to distinguish non-unitary CC-only from CC+NC case)
- ▶ account for
 - ▶ oscillation parameter uncertainties (4 free parameters)
 - ▶ flux / interaction / detection systematics (12 free parameters)

KM3NeT/ORCA sensitivity for 1 & 3 years of data taking

[arXiv:2103.09885]

Summary

- ▶KM3NeT/ORCA optimised in few-GeV region and > 6 Mt instrumented mass
 - > 3k ν_{τ} CC events / year in analysis sample
- ▶ tau-neutrino events appear shower-like in KM3NeT/ORCA
- ▶ no event-by-event identification feasible, measurement on statistical basis
- $\triangleright
 u_{ au}$ normalisation only weakly constrained (even at 1σ) from current experimental results
- >KM3NeT/ORCA is sensitive to constrain normalisation to $\pm 20\,\%\,(\pm 30\%)$ after 3 (1) years with 3σ
 - and competitive at early construction stage.

Backup

Trigger effective volume

Detector performance

[arXiv:2103.09885]

Included systematics

$I(\vartheta) =$	$n_{\tau}(3\sigma n_{\tau}>0,\vartheta \text{ fitted}) - n_{\tau}(3\sigma n_{\tau}<0,\vartheta \text{ fitted})$	
I(b) =	$\frac{1}{n_{ au}(3\sigma n_{ au}>0,\vartheta ext{ fixed})-n_{ au}(3\sigma n_{ au}<0,\vartheta ext{ fixed})}-1$	

parameter	null hypotl NO	hesis value IO	prior
θ_{12}	33.82°		fixed
$\Delta m^2 [{ m eV}^2]$	7.39×10^{-5}		fixed
$ heta_{13}$	8.60°	8.64°	$\pm 0.13^{\circ}$
θ_{23}	48.6°	48.8°	free
$\Delta M^2 [{ m eV}^2]$	2.528×10^{-3}	2.436×10^{-3}	free
$\delta_{ ext{CP}}$	221°	282°	free

Importance evaluation: impact on allowed 3σ range when fixing individual (groups of) parameters

shifts position of oscillation maximum

	parameter	initial value	prior	
	$v_{\rm e}/\bar{v}_{\rm e}$ flux ratio	0	$\mu = 0$, $\sigma = 7\%$	
	$ u_{\mu}/ar{ u}_{\mu}$ flux ratio	0	$\mu = 0$, $\sigma = 5\%$	
	$ \frac{v_{\mu}/\bar{v}_{\mu}}{\hat{v}_{e}/\hat{v}_{\mu}} $ flux ratio	0	$\mu=0,\ \sigma=2\%$	
L	spectral tilt	0	$\mu=0,\;\sigma=5\%$	
L	$\cos(\theta)$ tilt	0	$\mu=0,~\sigma=2\%$	
	$ u/ar{ u}$ ratio	0	$\mu=0,\;\sigma=3\%$	
	NC scale	1	$\mu = 1 ,\; \sigma = 10\%$	
Г	E-scale shift EM shower	0	$\mu=0,\;\sigma=5\%$	
L	E-scale shift hadronic shower	0	$\mu = 0$, $\sigma = 6\%$	
	track channel norm	1	free	
	shower channel norm	1	free	
	middle channel norm	1	free	

tilts flux spectrum in cos(zenith)

PMT efficiency / water properties light yield of hadronic part of cascade

[Hallmann, PhD thesis, arXiv:2103.09885]

Event distribution, all classes

[Hallmann, PhD thesis]

Event identification, track

 How long does the muon track need to be to see it?

Figure 11.7: Minimum muon energy needed for clear identification as track as a function of neutrino energy. The transition region between the track- and shower-like regime is indicated by the shaded bands.

[Hallmann, PhD thesis]

Noise background suppression

[arXiv:2103.09885]

N(all preselected u)

▶ few-% contamination can be achieved

→ neglect in sensitivity studies

 $\frac{N(\text{atm. } \mu \text{ after cut})}{N(\nu + \mu \text{ after cut})}$

- ▶ few-% contamination can be achieved
- ▶ same (and better) for pure noise
- → neglect in sensitivity studies

 $\frac{N(\text{atm. } \mu \text{ after cut})}{N(\nu + \mu \text{ after cut})}$